Competition between ices Ih and Ic in homogeneous water freezing.

نویسندگان

  • Alberto Zaragoza
  • Maria M Conde
  • Jorge R Espinosa
  • Chantal Valeriani
  • Carlos Vega
  • Eduardo Sanz
چکیده

The role of cubic ice, ice Ic, in the nucleation of ice from supercooled water has been widely debated in the past decade. Computer simulations can provide insightful information about the mechanism of ice nucleation at a molecular scale. In this work, we use molecular dynamics to study the competition between ice Ic and hexagonal ice, ice Ih, in the process of ice nucleation. Using a seeding approach, in which classical nucleation theory is combined with simulations of ice clusters embedded in supercooled water, we estimate the nucleation rate of ice for a pathway in which the critical nucleus has an Ic structure. Comparing our results with those previously obtained for ice Ih [Sanz et al., J. Am. Chem. Soc. 135, 15008 (2013)], we conclude that within the accuracy of our calculations both nucleation pathways have the same rate for the studied water models (TIP4P/Ice and TIP4P/2005). We examine in detail the factors that contribute to the nucleation rate and find that the chemical potential difference with the fluid, the attachment rate of particles to the cluster, and the ice-water interfacial free energy are the same within the estimated margin of error for both ice polymorphs. Furthermore, we study the morphology of the ice clusters and conclude that they have a spherical shape.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: the appearance of a plastic crystal phase.

In this work the high pressure region of the phase diagram of water has been studied by computer simulation by using the TIP4P/2005 model of water. Free energy calculations were performed for ices VII and VIII and for the fluid phase to determine the melting curve of these ices. In addition, molecular dynamics simulations were performed at high temperatures (440 K) observing the spontaneous fre...

متن کامل

Shock Hugoniot of H2O ice

[1] The outcome of impacts onto and between icy planetary bodies is controlled by the material response defined by the shock Hugoniot. New Lagrangian shock wave profile measurements in H2O ice at initial temperatures (T0) of 100 K, together with previous T0 = 263 K data, define five distinct regions on the ice Hugoniot: elastic shocks in ice Ih, ice Ih deformation shocks, and shock transformati...

متن کامل

Properties of ices at 0 K: a test of water models.

The properties of ices Ih, II, III, V, and VI at zero temperature and pressure are determined by computer simulation for several rigid water models (SPC/E, TIP5P, TIP4P/Ice, and TIP4P/2005). The energies of the different ices at zero temperature and pressure (relative to the ice II energy) are compared to the experimental results of Whalley [J. Chem. Phys. 81, 4087 (1984)]. TIP4P/Ice and TIP4P/...

متن کامل

Hugoniots and Shock-melting Criteria for Solid and Porous H2o Ice

Introduction. Knowledge of the dynamic response of planetary minerals such as H2O ice is required to model and interpret mutual collisions and impact craters. The Hugoniot of H2O ice describes the dynamic strength and possible shock-compressed states, which determine the mechanical and thermodynamic work done during an impact event. Previous studies [1, and references within] of the shock prope...

متن کامل

The phase diagram of water at negative pressures: virtual ices.

The phase diagram of water at negative pressures as obtained from computer simulations for two models of water, TIP4P/2005 and TIP5P is presented. Several solid structures with lower densities than ice Ih, so-called virtual ices, were considered as possible candidates to occupy the negative pressure region of the phase diagram of water. In particular the empty hydrate structures sI, sII, and sH...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 143 13  شماره 

صفحات  -

تاریخ انتشار 2015